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Abstract-Shape factors for steady heat conduction from single bodies and for various configurations of 
such bodies are often presented in heat transfer textbooks. These presentations are not always clear. 

Using a single sphere in an infinite medium as an example, a scheme is developed to obtain the shape 
factor for the hemisphere, for two spheres, a sphere near an isothermal surface and near an adiabatic surface. 

This scheme can also be applied to other bodies such as ellipsoids, circular discs, pieces of wire and 
ribbons. 

The introduction of a “shape resistance”, as the reciprocal of the shape factor, and of a “distance func- 
tion”, characterizing the influence of the mutual distance of the bodies, simplifies the presentation of the 
scheme. 

The overall shape resistance of a configuration can be obtained additively from the shape resistance of 
a single body and from the distance function. 

Shape resistance and distance function for various bodies are presented in diagrams. 

NOMENCLATURE 

area ; 

axis of ellipsoid ; 

distance ; 

all difficulties encountered in calculating heat flows 
through odd geometries into the determination of 
one single factor. Moreover, a shape factor, deter- 
mined once, for a certain geometry can be successfully 
used for all physical phenomena occurring in the 

distance function ; 
planting depth, D/2; 
thermal conductivity; 
length ; 
length in normal direction ; 
shape resistance; 

same geometry and governed by 
equation. 

From Fourier’s equation for steady 
tion 

d4= -,;,A 

the Laplace 

heat conduc- 

(1) 

radius ; 
shape factor; 

and with a non-dimensional temperature ratlo 

temperature ; 9 = 0 - W(t, - a (2) 
non-dimensional temperature ratio, (t - tJ/ 
(t1 -t,); 

t, and t, being the given temperatures of the boun- 

heat flow. 
daries, we obtain the equation 

.^ lndiceb 
1, boundary one ; 
2, boundary two; 
a, adiabatic plane ; 
B ellipsoid body 

I, isothermal plane; 
r, normalized with radius; 
5 sphere ; 
1, referring to source ; 
II, referring to sink, source. 

$J = - k(r, - tJ ~(cXJ/&I) dA. (3) 
A 

In this equation (3) three factprs are discerned: a 
property k, a temperature difference (ti - tz) and an 
integral. This integral only depends on the shape of 
the body and is therefore named shape factor 9’ : 

9’ = r(&!J/an) dA. 
i 

In some cases, shape factors presented in heat transfer 
literature are ambiguous or even incorrect. On the 
other hand, in mathematical or electric field literature 
a number of solutions of Laplace’s equation are given 
for odd geometry problems in a complex form together 
with other physical parameters, thus masking the 
shape factor. 

INTRODUCTION 

IN RECENT years, shape factors for steady heat con- 
duction have found their way into heat transfer text- 
books. Such factors were first mentioned by Lang- 
muir et al. [l]. They offer the advantage of transferring It will be shown here that shape factors for spherical 

267 



26P E. HAHNE and U. GRJGULL 

bodres and their various configurations, in many 
cases follow a simple scheme. From the shape factor 
of a single sphere in an infinitely extended medium, 
factors for the hemisphere in a semi-infinite medium 
can be derived, or for two spheres’ arra~~ments, or 
for spheres buried in the ground with isothermal or 
adiabatic surface. For this purpose the introduction 
of a shape resistance and a distance function is con- 
venient and renders vivid results. 

Bodies originating from point sources follow the 
same scheme. 

1. BINGLE SPHERE IN AN INFINITELY EXTENDED 
MEDIUM 

From Laplace’s equation the shape factor for two 
concentric isothermal spherical shells, of temperature 
tI for the inner and t2 for the outer she& can be calcu- 
lated from equation (4) as 

(5) 

Extending the radius r2 of the outer shell (i.e. the 
outer isotherm) into infinity, we obtain the shape 
factor of a single isothermal sphere in an inEmteIy 
extended medium as 

P, = 4lrr 

or in non-dirne~sio~~l form 

@a) 

The reciprocal of this factor will be called “shape 
resistance” of a sphere, 9gS : 

9& = l,‘w, = 1/4nr fW 

or in non-dimensional form 

r8,v - l/(YJ, = l/h (W 

2. HEMISPHERE IN THE SURFACE OF A 
S~~-~N~~~LY EXTENDED MEDIUM 

This case j~~~at~l~ folh3ws from section 1 by 
dividing a single sphere arrangement into two halves. 
From one half of a sphere consequently only half the 
heat is conducted away giving a shape factor for the 
hemispherical arrangement 

9,s = $CP-S = 4-4xr* 

and a shape resistance 

@a) 

R,, = 2.9%. fgb) 
I- ~~~ 

* Purposely the factor 4a is kept in all equations in order 
to indicate the spherical origin and to prevent confusion with 
cylindrical geometries where 2% is a characteristic factor. 

It is important to note that the two isotherms t, and 
t, necessary for the solution of the heat conduction 
problem are formed, for one side, by the hemispherical 
shell with a given radius r = rr, and for the other, by 
a hemispherical shell located at infinity Y --f IX?. 
The plane dividing the original spheric arrangement, 
usually considered as the surface of the ground con- 
tainlng the hemisphere, originates from streamlines 
and therefore must be an adiabatic plane. As an 
isotherma surface, occasionahy presented in litera- 
ture, it would bring about the intersection of two 
isotherms and a thermal short circuit. 

3. TWO SPHERES IN AN INFINITELY EXTENDED 
MEDIUM 

From equations (IS), (4) and @a), with tem~rature 
t2 being taken zero at infinity, the temperature field 
around a single sphere is characterised by 

t- 41 --. - - k 4nr 

The temperature field around two spheres in a mut& 
distance B = 2h is obtained by superposition as 

rt and r, being radius vectors. 
Assuming a point source and a point sink of 

opposite equal capacity f#rr = - (Ptr = 4, the tem- 
perature anywhere in the field is 

Q,l 1 1 
r=: -_- -I_. 

C > k 4n rn rrt 
(11) 

Such a field giving heat Row hnes as streamfines and 
isotherms as ~~~~ot~ntia~-~~nes is presented in Fig. I. 

For the case of opposite equal capacity, shown here, 
the isotherms flatten in the section where the two 
spheres face each other and they stretch in the averted 
parts, thus forming a pear-Iike pattern. 

For the different case of two sources of equal 
capacity the isotherms flatten in the averted sections 
and stretch where the spheres face each other, until 
they finally merge. In some distance around the two 
sources then the isotherms will be ellipsoid-shaped. 

From Fig. 1 it is observed that two spherical iso- 
therms are obtained when the distance L) is large 
compared to the radius r. For a distance-radius ratio 
D/r >, 5 the surface temperatures t, and tz of the 
spheres can be calculated in good approximation by 
introducing for the radius vectors r2 % D and r1 x 0 
respectively, giving 
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FIG. 1. Field lines around two spheres of opposite equal 
capacity. 

The heat conducted between the two spheres is 

r#J = - k(t, - tz) 47cr 
2(1 - r/D) 

(13) 

and, by comparison with equations (3) and (4) shape 
factor and shape resistance are 

48r 
Y,, = 

2(1 - r/D) 
; Wzs = 2.; (1 - r/D). (14) 

The influence of the distance D can be characterized 
separately by a so-called “distance-function” 

9, = ;.;, (15) 

Introducing this into the shape resistance of equation 
(14) we obtain 

w,, = 2(R, - 9,). (19 

Thus the overall resistance W,, may be considered as 
being composed of two partial resistances : the resist- 
ance 9?, imposed by each single sphere and the distance 
function, which reduces this sphere resistance, to 
account for the fact that heat is conducted across a 
finite distance and not across an infinite distance for 
which W, was derived. The factor 2 may indicate that 
two spheres are involved in our problem. 

In literature, the case of small distance-radius ratios 
2 < D/r < 5 is also treated and in [2, 33 electrical 

potentials are calculated. From these, the shape 
factor is determined as the series 

r 5 

+3 5 +.... 0 1 (17) 

Comparison of shape factors calculated from equa- 
tion (14) and (17) brings deviations of not more than 
about 1 per cent, even for small ratios of D/r (2 2). 

For very large values D/r or a very large distance 
D of the two spheres, the shape factor in (14) and (17) 
will approach the value of the hemispherical case. 
This appears reasonable imagining flow lines and 
their increasing lengths for the averted sections of the 
spheres. 

4. SPHERES OPPOSITE To A PLANE 

In literature, these cases are described as spheres 
buried in the ground in some distance h to the surface. 

With the sphere, in any case, forming an isotherm, 
two variations have to be distinguished: the plane 
surface of the ground representing an isotherm or an 
adiabate. 

4.1 Isothermal plane 
From Fig. 1 it is obvious that half way, h = D/2, 

between the source and the sink a straight, plane 
isotherm is located. Taking this plane isotherm as the 
surface of the ground with heat being conducted from 
the sphere to this surface, the length of all streamlines, 
of the two sphere case, now is cut in half. If now the 
temperature t2 is associated to the plane, the heat 
flow will be twice as large as for two spheres and 
consequently the shape factor will be twice as large. 

sPSi = 2. Y,, = 4nr/(l - r/D). (18) 

The shape resistance for an isothermal sphere near 
an isothermal plane is 

WSi = ) wzs = 9, - 9,. (19) 

In comparison to the two spheres’ case with a resist- 
ance given in equation (19, the overall shape resist- 
ance in equation (19) is composed of the single 
difference of the shape factor of a single sphere and a 
distance function thus vividly demonstrating that 
only one sphere is considered now. The distance 
function has to be formed with D = 2h. 

4.2 Adiabatic plane 
Different from the source and sink arrangement 

used so far, now two sources of equal capacity 
4, = $,, = $J shall be considered. From equation 
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(11) with the approximation r2 z D and rr z D Thus, the shape factor read from equation (20) 
respectively the heat flow from either source to the applies to the isothermal sphere at a distance of 
infinite distant sink is calculated as h = D/2 of an adiabatic plane. This shape factor is 

4nr 
4= -kt-----. Y,, = 4nr/(l + r/D) (214 

1 + r/D 
(20) 

and the shape resistance is 
Half way, h = D/2, between the two sources, again a 
straight plane is formed, which, originating from 
streamlines now. is an adiabatic surface. 

SYS. = -& (1 + r/D) = 8, + 9?,. Wb) 

b/osl/r 

FIG. 2. Non-dimensional shape resistance for various bodies. 

Non-dlmenslanal distance function 19 err 9 

wire or ribbon 

D/l or D/r 

FIG. 3. Non-dimensional distanaz function for various arrangements of 
different bodies. 
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Comparing to equations (19 and (19) now the overall an infinitely extended medium and respective two 

resistance is the sum of ’ the single sphere resistance body arrangements are given in literature [2-81. 

and the distance function. This addition of resistances From those, a non-dimensional shape resistance and 

may be explained with the compression of stream- a non-dimensional distance function was determined 

lines near the adiabatic boundary. and is presented in Figs. 2 and 3. 
For large planting depths h, according to equation 

(15) the distance function becomes negligible and the 
resistance for both the isothermal and the adiabatic 
plane approach the value of the resistance of a single 
sphere. 

5. BODIES ORIGINATING FROM POINT SOURCES 

Point sources, lined up in a straight line will form 
a line source of finite length. 

The isotherms around such a source have the shape 
of an elongated “cigar-like” ellipsoid. Long ellipsoids 
with small shorter axes (b/u $ 1) can well be con- 
sidered as pieces of a cylindric wire or as pieces of a 
flat ribbon. 

Rotating an elongated ellipsoid around its shorter 
axis produces a compressed “discus-like” ellipsoid. 
With its shorter axis 6 = 0, this ellipsoid turns into a 
flat circular disc, and with axes a = b, a sphere is 
obtained. 

In Fig. 2 a non-dimensional shape resistance aR 
is plotted vs the ratio of the axes of the ellipsoid 
bodies, or for wires, vs the length-radius ratio. 

In order to read the shape resistance directly from 
Fig 2, the ordinate values of a9 are multiplied by 4x. 
This gives, e.g. for the flat disc with b/a = 0 and a = r 

4xrW = 1.5708 = 5 and W = $. 

In Fig. 3, the non-dimensional distance function 19 
or r cZS is plotted versus a non-dimensional distance 
D/l or D/r. The normalization is based upon the 
greatest length occurring in the considered body. 
Ordinate and abscissa values have to correspond in 
their normalizing length, I or r. 

From Figs. 2 and 3 the overall shape resistance for 
various bodies originating from point sources can be 
calculated following the scheme given for the example 

Potential field solutions for such single bodies in of spheres and compiled in Table 1. 

Table 1. 

Geometric arrangement Shape factor Shape resistance 

F- 
r 

+k 

YLl 9, 
single body in non-dimcnsionat non-dimeosi~n~tl 

t 
u&rite medium 

(.Y& = : 
1 

rL8B = __ 

fa -co 
(Ytl), 

,W r semibody in &?** = 2w, 
semi-infinite 

f -co 
Y,, = $Ya 

2 medium _-. 
/ 

II 

1 
f2 two bodies in 

y,, = 
%a = (29e, - 9B) 

2@, - 9,) 
D infinite non-dimensional 

medium 
non-dimensional 

(.Y,,), = pip 
f,’ r 2r(B, - 9B) 

rse 2B = 2(r9tB - r9,) 

D body near an 

3J 

?2 2 isothermal plane 
r 

?I 

P r P 

x 
body near an 1 

t, adiabatic plane 
9, = ~ 

% + 9Lr 
w, = 9, + 5Rs 

?a -cc 
-I 
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As indicated in Table 1, in the two body case, the 2. 
normalizing lengths, have to be the same for either 
term. Alterations in these normalizing lengths can be 3. 
performed with 4. 

IR = ‘. r92?. 
r 

(22) 5, 

6. 
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UNE MI?THODE DE FACTEUR DE FORME POUR DES CONFIGURATIONS DE 
SOURCES PONCTUELLES 

R&m&Des facteurs de forme pour la conduction thermique dans des corps de forme varite sont p&en& 
de plus en plus frtquemment dans les livres. Ces prCsentations ne sont pas toujours claires. 

Prenant pour exemple une sphtre unique dans un milieu infini on dkveloppe une mkthode pour obtenir le 

facteur de forme pour l’hkmisphtre, pour deux sphkes, pour une sphtre prts d’une surface isotherme et 

p&s d’une surface adiabatique. 
Cette mCthode peut &re appliquke B d’autres corps tels que des ellipsoides, des disques circulaires, des 

troncons de fils et de rubans. 

L’introduction d’une “rtsistance de forme” comme inverse du facteur de forme et d’une “fonction de 
distance”, simplifie la prCsentation de la m&hode. La rt‘sistance globale de forme d’une configuration peut 
@tre obtenue de faGon additive & partir de la rtsistance de forme d’un tlkment et de la fonction de distance. 

On prtsente par des diagrammes la ritsistance de forme et la fonction de distance pour difftrents corps. 

EIN FORMFAKTORSCHEMA FOR PUNKTQUELLEN-ANORDNUNGEN 

Zllsammenfassung-Formfaktoren der station&n WLrmeleitung von Einzelkiirpem und verschiedener 
ihrer Anordnungen werden immer hSiuf?ger in Lehrbiichem der WLrmeiibertragung angegeben. Diese 
Angaben sind nicht immer eindeutig. 

Am Beispiel einer Einzelkugel im unendlich ausgedehnten Medium wird ein Schema zur Ermittlung 
des Formfaktors angegeben, fiir die Halbkugel, fiir zwei Kugeln, einer Kugel vor einer isothermen und 
vor einer adiabaten Wand. 

Dieses Schema l&St sich such auf andere K&per, wie Ellipsoide, Kreisscheiben, Drahtstiicke und 
Binder anwenden 

Die Einf”hrung eines “Formwiderstandes” als dem Reziprokwert des Formfaktors und einer “Abstands- 
funktion” als Charakteristkum des gegenseitigen Abstandes der Kiirper erleichert die Schematik. Der 
Gesamtformwiderstand einer Anordnung kann additiv aus dem Formwiderstand des Einzelkijrpers und 
der Abstandsfunktion erhalten werden. 

Formwiderstand und Abstandsfunktion sind fiir verschiedene K6rper in Diagrammen wiedergegeben. 

hHOTal(Ila--n yW6HIlKaX II0 TWIOO6,VeHJ’ WI? YaLIJe n~I1aO~RTCFI (POPM-@aIiTOpbI &IIFl 

CTaWiOHapHOfi TWIJIOnpOBO~HOCTH O~MHOYHbIX Te3 pa3JIRYHblX IfOH@4r?;paI@i II ipOpMe, He 

BCerI[a IIOHRTHOti ~llTaTWII0. 

Ha npaMepe O#IHOYHO~ c@epbI B 6ecKoHewoB cpege paspa6aTbIBaeTcn CxeMa nongYeHrIn 

IjlOpM-@aHTOpa ZJIFI nOJIJW@pbI, ABJJX Cl&p, Cipepb’ Bfi,nllaM K3OTepMIWCHOti IlOnel~XHOCT~l II 

C$EpbI ~6naan anaa6aTnqecKoil nosepxnocrrl. 
~TOT MeTOR TaKlfEe MOWHO npAMt?HHTb RJIFI TaKMX TeJI, IiaIi :3JIJII4IICOEl~bI, Kpyrnbre !IMCtiM, 

HJ’CHI? IIpOBOJIOHll II JIeHTbI. 

BeeneHLle nOHHTHfi COIIpOT&lBJIeHkIFI @OpMbI (06paTHOti BWIWIHHhI ipOpM-@aKTOpa) I1 

@YHK9HM PaCCTOfIHRfI, XapaHTE!pI48J?Omett RJIHFIHHB PaCCTORHMR MWKQ- TB;IaMII, RHa411TeJlbIIO 

ynpoqaeT MeTOZUlK~. 
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Cj'MMapHOt?:3HElWHIle COnpOTI1R~eHIIR $OpMbI AZIR CMCTeMbI JIIO606l KOH()RIJ'pa~PIH MOMHO 

rIOJIy%lTb, IlCIIOJJb3yR 3HaYeHAe COnpOTIiBJIeHIwl @OpMbI O~MHOYHOrO TGI3 Vi @YHKl@4R 

PaCCTOflHRH. 

COIIpOTIlBJIeHMe @OpMbI I4 f.jj'HKULIH paCCTOfiHklR AJIFI pa3HbIX TeJI IlpeACTaBnf?HbI Ha 

rpa@Hax. 

H.M.T. 1712~~ 


